0 Forks
0 Stars
0 Watchers

SuperMarioBros-ReinforcementLearning

This project implements an agent for playing the SuperMarioBros game using the Proximal Policy Optimization (PPO) algorithm from the stablebaselines3 library. The agent is trained to learn the optimal actions to take at each step in the game in order to complete the level and maximize the score.

How to download and setup SuperMarioBros-ReinforcementLearning

Open terminal and run command
git clone https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning.git
git clone is used to create a copy or clone of SuperMarioBros-ReinforcementLearning repositories. You pass git clone a repository URL.
it supports a few different network protocols and corresponding URL formats.

Also you may download zip file with SuperMarioBros-ReinforcementLearning https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning/archive/master.zip

Or simply clone SuperMarioBros-ReinforcementLearning with SSH
[email protected]:MichaelFish199/SuperMarioBros-ReinforcementLearning.git

If you have some problems with SuperMarioBros-ReinforcementLearning

You may open issue on SuperMarioBros-ReinforcementLearning support forum (system) here: https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning/issues

Similar to SuperMarioBros-ReinforcementLearning repositories

Here you may see SuperMarioBros-ReinforcementLearning alternatives and analogs

 netdata    express-performance-monitor    huginn    pinpoint    amon    scouter    dd-agent    egjs    merlin    PyGame-Learning-Environment    inspectIT    goappmonitor    mario-ai    zappr    covertutils    Recaf    deep-trading-agent    trezor-agent    PKURemote    jvm-profiler    stackimpact-go    sematext-agent-docker    opennars    docker-inbound-agent    xnumon    fusioninventory-agent    outis    pi-web-agent    logdna-agent    sarl