SuperMarioBros-ReinforcementLearning
This project implements an agent for playing the SuperMarioBros game using the Proximal Policy Optimization (PPO) algorithm from the stablebaselines3 library. The agent is trained to learn the optimal actions to take at each step in the game in order to complete the level and maximize the score.
How to download and setup SuperMarioBros-ReinforcementLearning
Open terminal and run command
git clone https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning.git
git clone is used to create a copy or clone of SuperMarioBros-ReinforcementLearning repositories.
You pass git clone a repository URL. it supports a few different network protocols and corresponding URL formats.
Also you may download zip file with SuperMarioBros-ReinforcementLearning https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning/archive/master.zip
Or simply clone SuperMarioBros-ReinforcementLearning with SSH
[email protected]:MichaelFish199/SuperMarioBros-ReinforcementLearning.git
If you have some problems with SuperMarioBros-ReinforcementLearning
You may open issue on SuperMarioBros-ReinforcementLearning support forum (system) here: https://github.com/MichaelFish199/SuperMarioBros-ReinforcementLearning/issuesSimilar to SuperMarioBros-ReinforcementLearning repositories
Here you may see SuperMarioBros-ReinforcementLearning alternatives and analogs
netdata express-performance-monitor huginn pinpoint amon scouter dd-agent egjs merlin PyGame-Learning-Environment inspectIT goappmonitor mario-ai zappr covertutils Recaf deep-trading-agent trezor-agent PKURemote jvm-profiler stackimpact-go sematext-agent-docker opennars docker-inbound-agent xnumon fusioninventory-agent outis pi-web-agent logdna-agent sarl