22 Forks
45 Stars
45 Watchers

anomaly-event-detection

Work in progress and needs a lot of changes for now. An implementation of paper Detecting anomalous events in videos by learning deep representations of appearance and motion on python, opencv and tensorflow. This paper uses the stacked denoising autoencoder for the the feature training on the appearance and motion flow features as input for different window size and using multiple SVM as a single classifier this is work under progress.

How to download and setup anomaly-event-detection

Open terminal and run command
git clone https://github.com/nabulago/anomaly-event-detection.git
git clone is used to create a copy or clone of anomaly-event-detection repositories. You pass git clone a repository URL.
it supports a few different network protocols and corresponding URL formats.

Also you may download zip file with anomaly-event-detection https://github.com/nabulago/anomaly-event-detection/archive/master.zip

Or simply clone anomaly-event-detection with SSH
[email protected]:nabulago/anomaly-event-detection.git

If you have some problems with anomaly-event-detection

You may open issue on anomaly-event-detection support forum (system) here: https://github.com/nabulago/anomaly-event-detection/issues

Similar to anomaly-event-detection repositories

Here you may see anomaly-event-detection alternatives and analogs

 openFrameworks    openpose    opencv    caire    Is-Now-Illegal    BossSensor    TagUI    javacv    faceai    opencv4nodejs    sistine    gocv    opencvsharp    trace.moe    bgslibrary    OpenSfM    object_detector_app    opentrack    FaceTracker    lbpcascade_animeface    OpenCV3-Intro-Book-Src    ChosunTruck    MMCamScanner    OpenCVForAndroid    eyeLike    opencv    ofxCv    Repo-2017    Human-detection-and-Tracking    lambda-packs