45 Forks
74 Stars
74 Watchers

movie-recommender-demo

This project walks through how you can create recommendations using Apache Spark machine learning. There are a number of jupyter notebooks that you can run on IBM Data Science Experience, and there a live demo of a movie recommendation web application you can interact with. The demo also uses IBM Message Hub (kafka) to push application events to topic where they are consumed by a spark streaming job running on IBM BigInsights (hadoop).

How to download and setup movie-recommender-demo

Open terminal and run command
git clone https://github.com/snowch/movie-recommender-demo.git
git clone is used to create a copy or clone of movie-recommender-demo repositories. You pass git clone a repository URL.
it supports a few different network protocols and corresponding URL formats.

Also you may download zip file with movie-recommender-demo https://github.com/snowch/movie-recommender-demo/archive/master.zip

Or simply clone movie-recommender-demo with SSH
[email protected]:snowch/movie-recommender-demo.git

If you have some problems with movie-recommender-demo

You may open issue on movie-recommender-demo support forum (system) here: https://github.com/snowch/movie-recommender-demo/issues

Similar to movie-recommender-demo repositories

Here you may see movie-recommender-demo alternatives and analogs

 technology-talk    scrapy-cluster    alpakka-kafka    kmq    gosiris    kafka-health-check    pipeline    graylog2-server    kq    jocko    thingsboard    cilium    dnc    atmosphere    gizmo    librdkafka    ksql    CAP    oryx    seldon-server    secor    surging    enqueue-dev    kafka-rest    myth    goka    syslog-ng    kafka-php    rsyslog    pykafka