25 Forks
72 Stars
72 Watchers

data-science-best-practices

The goal of this repository is to enable data scientists and ML engineers to develop data science use cases and making it ready for production use. This means focusing on the versioning, scalability, monitoring and engineering of the solution.

How to download and setup data-science-best-practices

Open terminal and run command
git clone https://github.com/IBM/data-science-best-practices.git
git clone is used to create a copy or clone of data-science-best-practices repositories. You pass git clone a repository URL.
it supports a few different network protocols and corresponding URL formats.

Also you may download zip file with data-science-best-practices https://github.com/IBM/data-science-best-practices/archive/master.zip

Or simply clone data-science-best-practices with SSH
[email protected]:IBM/data-science-best-practices.git

If you have some problems with data-science-best-practices

You may open issue on data-science-best-practices support forum (system) here: https://github.com/IBM/data-science-best-practices/issues

Similar to data-science-best-practices repositories

Here you may see data-science-best-practices alternatives and analogs

 httpie    chef    awesome-computer-science-opportunities    grafana    matomo    telegram-list    netdata    jenkins    stats    docker_practice    gitea    dashboards    awesome-datascience    papers-I-read    react-native-firebase    portal    kong    openebs    metabase    wtf    goaccess    lynis    metrica-sdk-ios    adminset    owl    laravel-server-monitor    webterminal    urlooker    redash    laravel-backup