7 Forks
43 Stars
43 Watchers

Serving-Machine-Learning-Models

This repository contains instructions, template source code and examples on how to serve/deploy machine learning models using various frameworks and applications such as Docker, Flask, FastAPI, BentoML, Streamlit, MLflow and even code on how to deploy your machine learning model as an android app.

How to download and setup Serving-Machine-Learning-Models

Open terminal and run command
git clone https://github.com/Nneji123/Serving-Machine-Learning-Models.git
git clone is used to create a copy or clone of Serving-Machine-Learning-Models repositories. You pass git clone a repository URL.
it supports a few different network protocols and corresponding URL formats.

Also you may download zip file with Serving-Machine-Learning-Models https://github.com/Nneji123/Serving-Machine-Learning-Models/archive/master.zip

Or simply clone Serving-Machine-Learning-Models with SSH
[email protected]:Nneji123/Serving-Machine-Learning-Models.git

If you have some problems with Serving-Machine-Learning-Models

You may open issue on Serving-Machine-Learning-Models support forum (system) here: https://github.com/Nneji123/Serving-Machine-Learning-Models/issues

Similar to Serving-Machine-Learning-Models repositories

Here you may see Serving-Machine-Learning-Models alternatives and analogs

 three.js    html5-boilerplate    Chart.js    js-stack-from-scratch    sheetjs    tabler    fastlane    libgdx    capistrano    chef    video.js    WebFundamentals    spritejs    symphony    bootstrap-fileinput    spellbook-of-modern-webdev    prettydiff    tacit    mediaelement    hls.js    chimee    H5-dash-hls-rtmp-webrtc    cache-pug-templates    express-babel    Zewo    up    vertigo    design-blocks    HEAD    deployer